Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.
نویسندگان
چکیده
The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.
منابع مشابه
Covariate balancing propensity score
The propensity score plays a central role in a variety of causal inference settings. In particular, matching and weighting methods based on the estimated propensity score have become increasingly common in the analysis of observational data. Despite their popularity and theoretical appeal, the main practical difficulty of these methods is that the propensity score must be estimated. Researchers...
متن کاملA new weighting approach to Non-Parametric composite indices compared with principal components analysis
Introduction of Human Development Index (HDI) by UNDP in early 1990 followed a surge in use of non-parametric and parametric indices for measurement and comparison of countries performance in development, globalization, competition, well-being and etc. The HDI is a composite index of three indicators. Its components are to reflect three major dimensions of human development: longevity, knowledg...
متن کاملCalibration Weighting to Compensate for Extreme Values, Non-response and Non-coverage in Labor Force Survey
Frame imperfection, non-response and unequal selection probabilities always affect survey results. In order to compensate for the effects of these problems, Devill and Särndal (1992) introduced a family of estimators called calibration estimators. In these estimators we look for weights that have minimum distance with design weights based on a distance function and satisfy calibration equa...
متن کاملThe finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation
The Finite Sample Performance of Semiand Nonparametric Estimators for Treatment Effects and Policy Evaluation This paper investigates the finite sample performance of a comprehensive set of semiand nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estim...
متن کاملParametric and Nonparametric Covariate Balancing Propensity Score for General Treatment Regimes∗
Propensity score matching and weighting are popular methods when estimating causal effects in observational studies. Beyond the assumption of unconfoundedness, however, these methods also require the model for propensity score to be correctly specified. The recently proposed covariate balancing propensity score (CBPS) methodology weakens this assumption by directly optimizing sample covariate b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Statistical Society. Series B, Statistical methodology
دوره 78 3 شماره
صفحات -
تاریخ انتشار 2016